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Abstract

Background: Recombination has a profound impact on the evolution of viruses, but characterizing
recombination patterns in molecular sequences remains a challenging endeavor. Despite its
importance in molecular evolutionary studies, identifying the sequences that exhibit such patterns
has received comparatively less attention in the recombination detection framework. Here, we
extend a quartet-mapping based recombination detection method to enable identification of
recombinant sequences without prior specifications of either query and reference sequences.
Through simulations we evaluate different recombinant identification statistics and significance
tests. We compare the quartet approach with triplet-based methods that employ additional
heuristic tests to identify parental and recombinant sequences.

Results: Analysis of phylogenetic simulations reveal that identifying the descendents of relatively
old recombination events is a challenging task for all methods available, and that quartet scanning
performs relatively well compared to the triplet based methods. The use of quartet scanning is
further demonstrated by analyzing both well-established and putative HIV-1 recombinant strains.
In agreement with recent findings, we provide evidence that the presumed circulating recombinant
CRF02_AG is a 'pure' lineage, whereas the presumed parental lineage subtype G has a recombinant
origin. We also demonstrate HIV-1 intrasubtype recombination, confirm the hybrid origin of SIV in
chimpanzees and further disentangle the recombinant history of SIV lineages in a primate
immunodeficiency virus data set.

Conclusion: Quartet scanning makes a valuable addition to triplet-based methods for identifying
recombinant sequences without prior specifications of either query and reference sequences. The
new method is available in the VisRD v.3.0 package http://www.cmp.uea.ac.uk/~vim/visrd.

Background recombination [e.g. [1,2]], inferring the rate of recombi-
Investigating the molecular footprint of recombination in ~ nation in a population, identifying parental and recom-
viral gene sequences is a multifaceted discipline. Such  binant sequences [e.g. [3,4]], and mapping breakpoints in
studies encompass statistical testing for the occurrence of =~ mosaic genomes [e.g. [5,6]]. Various recombination
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detection methods have been developed that generally
focus on one or a subset of these tasks [7] or attempt to
address increasing levels of complexity [e.g. [8]]. Most
popular methods to investigate viral recombination pat-
terns in a sequence alignment use a graphical sliding win-
dow approach to either scan the similarity of a query
sequence against a set of parental (or reference)
sequences, e.g. RIP [9] and SIMPLOT [6], or to compare
the phylogenetic branching patterns of the query
sequence relative to the parental sequences along the
genome, e.g. BOOTSCAN [10]. However, Martin et al.
(2005) noted that the proper use of these methods often
crucially depends on the prior identification of a suitable
set of non-recombinant parental sequences (or 'pure' lin-
eages), and, indeed, inclusion of recombinant reference
sequences can result in flawed interpretation.

In HIV-1, for example, subtype G has been classified as a
pure subtype for several years, but detailed analyses have
recently shown that this strain most likely evolved follow-
ing recombination between one lineage classifiable as the
so-called circulating recombinant form CRF02_AG and
another belonging to the 'pure' (i.e. non inter-subtype
recombinant) lineage subtype ] [11]. CRFO2_AG on the
other hand, was found to be a 'pure' subtype and its clas-
sification as a circulating recombinant form (CRF) could
be attributed to the inclusion of subtype G as a reference
sequence in the analysis. In this case, the sampling history
of subtypes and CRFs has caused a misinterpretation of
the evolutionary history of HIV-1 group M: the parental
subtype ] complete genome was not available at the time
subtype G was completely sequenced, so a recombinant
pattern for subtype G could not be clearly established
(although some ambiguous relationships with subtype A
and CRFO1_AE were noted) [12]. Therefore, subtype G
was assigned as a reference strain in the subsequent anal-
ysis of CRF02_AG, resulting in a misleading BOOTSCAN
profile that suggested a mosaic genome for CRF02_AG
[12].

The CRF02_AG example demonstrates that the 'query ver-
sus reference' approach will only be suitable to identify
recombinants if valid reference sequences can be assigned.
Such prior specification is essential for many methods,
including dedicated HIV-1 methods and web servers [e.g.
[13,14]]. An additional shortcoming of graphical sliding
window based methods, like BOOTSCAN, is that they
commonly lack a formal test for recombination. Although
bootstrap support values are well studied in phylogenet-
ics, there exists no clear statistical basis to conclude signif-
icance evidence for recombination based on bootstrap
variability across genome regions. In fact, by assessing sig-
nificance conditional on reference sequences and crosso-
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ver points that maximize the same test statistic, the
BOOTSCAN approach falls into a sequential testing trap
[15].

To avoid the problem of assigning appropriate reference
sequences, exploratory methods have been proposed that
consider every sequence as a potential recombinant or
parent in a scanning procedure. RECSCAN, for example, is
a modified BOOTSCAN algorithm that checks all combi-
nations of three sequences (triplets) for changing nearest
neighbor relationships. If different relationships are
observed with bootstrap support above a user-specified
value, a test of recombination is applied to the triplet [16].
With appropriate multiple testing correction, a wide array
of test approaches can be applied to all triplets to identify
those combinations that show evidence for recombina-
tion, including also substitution distribution methods
like maximum chi2 and GENECONV [2,17]. None of
these triplet exploration procedures, however, identify the
mosaic sequence within a triplet that shows evidence for
recombination. To tease apart recombinant from parental
descendent sequences, Heath et al. (2006) proposed a
series of additional heuristic tests that examine which
sequence relationships change the most across a recombi-
nation breakpoint. A weighted consensus of these tests is
eventually responsible for calling the recombinant
sequence. Unfortunately, this weighting scheme is an
arbitrary choice that is currently based on how accurately
HIV-1 CRFs are identified as mosaic genomes. Given the
problems concerning CRFs and subtype reference
sequences discussed above, approaches that do not
require empirical decisions would be a useful alternative
for recombinant identification. Other methods have been
proposed for recombinant identification [18], but accu-
rate prior classification of sequences remains essential for
their performance. Moreover, while the performance of
different methods to detect the presence of recombination
has been extensively evaluated [19,20], no such efforts
have been undertaken to investigate how well methods
perform in teasing out recombinant sequences.

Here, we present an alternative approach to detect recom-
binants without prior identification of non-recombinant
reference strains. We employ quartet-trees to rapidly scan
for phylogenetic inhomogeneity along a sequence align-
ment and demonstrate how this information can also be
employed to identify those sequences responsible for
detectable recombination signals. Using simulated data
sets we evaluate different quartet incongruence measures,
different approaches to assess the significance of various
recombination detection statistics, and compare their per-
formance at identifying recombinant sequences with that
of triplet-based methods. Finally, the usefulness of these
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methods in investigating recombination is demonstrated
at different scales of primate immunodeficiency virus
(PIV) evolution, including both HIV and SIV.

Methods

We describe the method developments in several subsec-
tions. The procedure we present here is an extension of a
previously developed visual recombination detection
(VisRD) method. We propose a scanning method that
evaluates whether all combinations of four sequences
(quartets) in a sequence alignment jointly provide evi-
dence for recombination. When this is the case, we rank
taxa or groups of taxa according to their contribution to
this recombination signal. The method can be employed
to sequentially prune putative recombinants until no sig-
nificant recombination evidence can be found in the
alignment. We start by briefly explaining the previously
developed visual recombination detection method based
on quartet scanning. Following the description of a novel
quartet mapping approach based on a distance-based
method, we present measures for phylogenetic inhomo-
geneity of quartets, ranking measures for taxa and groups
of taxa, and a global test statistic for recombination. We
then describe how null distributions can be obtained for
this test statistic. In addition to the VisRD method, we
briefly explain alternative triplet approaches used in our
comparisons. We conclude the methods section by pro-
viding details on the simulated and empirical data used in
this study.

Visual Recombination Detection

The VisRD method is designed to visually inspect
sequence alignments for recombination events [21,22].
VisRD works by computing quartets, or unrooted phylo-
genetic trees on four leaves, for each possible four-taxa set.
More specifically, at each window (i) in an alignment, a
support s; for each of the three possible quartet topologies
T;is computed using a statistical geometry approach [23].
Essentially, the support value s; is computed by summing
the number of site patterns that support T;. Following the
quartet mapping approach [24] [a generalization of likeli-
hood mapping, [25]], a relative support is then derived
that is defined as s;/(s;+s,+s;). Subsequently, the relative
supports for each quartet topology are summarized in a
quartet-mapping triangle; in this triangle, each quartet (in
this case, a single sliding window partition of a four
sequence alignment) is represented as a point (Figure 1),
whose co-ordinates reflect the support for each of the
quartet topologies. The corners of the triangle represent
the three fully resolved topologies for four taxa. A point
located close to such a corner reflects a high support for
this particular topology; the three relative support values
are represented by the lengths of the perpendiculars from
the point to the triangle sides [25]. By considering all of
the windows along the alignment, a trajectory in the trian-
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Figure |

Representation of the quartet-ranking principle. In
the quartet-mapping triangle, each dot represents the rela-
tive support for the three unrooted topologies [25]. The
quartet-mapping triangle depicted here summarizes the sup-
port across all windows in the scanning procedure. The mean
position for all quartets is indicated by p and the maximum
distance from the mean position is indicated by an arrow
(dpmay)- This example is based on the quartet with the highest
d,qx in the 'pure’ subtypes of the CRFO3_AB data set (see
Sequence data).

gle is then computed between the points representing
consecutive alignment partitions, the rationale being that
if recombination has occurred then points will follow
highly variable trajectories. These trajectories are then fil-
tered to reduce noise, and depicted in a highway plot (see
for example, Figure 2), which can be visually inspected for
recombination signals. In the highway plot, the horizon-
tal axis represents the sites in the alignment, whereas the
three lanes represent the regions supporting different
topologies (delineated by the dashed lines in the triangle
of Figure 1). Mapping points from a quartet triangle onto
the vertical axis of the highway plot is achieved by the
polar coordinates of the points; the most variable trajecto-
ries between all the points are filtered out to make up the
highway plot [22].

Distance-based quartet mapping

As indicated above, the quartet mapping approach used in
VisRD is based on statistical geometry [22,23]. Although
this eases computation [compared to likelihood map-
ping, [25], for example], it does not take into account the
complexities of nucleotide or amino acid substitution pat-
terns. To address this shortcoming in the new version of
VisRD, but still resort to fast quartet computation, we have
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Highway plot and phylogenies for the CRF03_AB data set. In this plot, the horizontal axis represents the alignment
sites, whereas the vertical axis indicates changes of topology and branch length of the inferred quartet trees along the align-
ment [22]. The three 'lanes', which lie between the three horizontal lines in the plot, reflect the fact that a quartet tree can
have three possible topologies. Each curve or 'trajectory' in the plot represents changes in the inferred quartet tree along the
alignment for a particular quartet of sequences. Only the trajectories for the 50 top-ranking quartets are shown. Maximum
likelihood trees for the three separate gene regions, separated by the breakpoints inferred from the quartet trajectory
changes, are shown below the highway plot. The recombinant strains are indicated with a rectangle.

implemented a distance-based minimum evolution (ME)
approach to quartet-mapping. Briefly, branch lengths for
each quartet topology are obtained using least-squares
solutions [26], and the relative support for topology T is

given by (1/ME1. )/2?:1(1/1\/1131. ), where ME is the sum

of all positive branch lengths. For nucleotide sequences,
the Jukes-Cantor, Kimura-two-parameter, Felsenstein '84
(F84) and Tamura-Nei substitution models were imple-
mented.

For protein sequences, we implemented a protein distance
estimator that uses a logarithmic correction of observed
divergence based on the alignment score derived from
empirical transition probability matrices [27]. This esti-
mator provides accurate and robust protein distances and

can be easily adjusted to use any empirical log odds sub-
stitution matrix. In addition to the BLOSUM62 model, we
also included HIV-specific matrices [28] and constructed
a matrix specifically for analyses of more divergent PIV
sequences. For the latter, we downloaded the available
amino acid alignments for the Gag, Pol, Env and Nef pro-
teins from the HIV database http://www.hiv.lanl.gov/,
including 67, 86, 84 and 68 sequences respectively.
Ambiguously aligned regions were deleted and phyloge-
netic trees were inferred using PhyML [29]. The stochastic
amino acid substitution model was inferred using a max-
imum likelihood phylogenetic approach that estimates
the 190 evolutionary rates, defining the general time
reversible model of amino-acid substitution, jointly from
a set of sequence alignments. Finally, a similarity matrix
with an expected sequence dissimilarity of 38% was gen-
erated as previously described using HyPhy [28,30].
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Nucleotide sequence alignments were analyzed using the
F84 model and a sliding window with a window size of
500 bp and a step size of 40 bp. Amino acid sequence data
was analyzed using the PIV log odds matrix, with a win-
dow size of 150 aa and a step size of 10 aa. Since nucle-
otide sequence alignments can include a number of
ambiguous characters, particularly for a population of
virus sequences, we also employed a random resolution
of ambiguous sites to one of their possible states based on
the nature of the ambiguity. For example, a site denoted
with the IUBMB symbol 'M' could be either an 'A' or 'C'
nucleotide; each is picked with equal probability when
distances are computed using one of the above models.

Taxon ranking, group ranking and test statistics

We now introduce methods for ranking taxa according to
their phylogenetic variability, and we derive a test statistic
for the presence of recombination in the global data set.
The purpose of the ranking is to identify the most likely
recombinants in case the sequence alignment set contains
significant evidence for recombination. The ranking of
taxa is achieved using measures of variability for quartets
that contain these taxa. The first measure of quartet trajec-
tory variability computes a score for each quartet g by
determining the average position of the corresponding
point p;(q) in the triangle across all alignment windows,

p (), and then computing the maximum distance of any
point from this position across all windows (d,, () =
max|p;,(q) - p (q)], Figure 1). This is repeated for all quar-
tets, and, for each taxon ¢, a rank (r,) is then computed as

the average d,,, value taken over all quartets that include

max

t. In particular, defining Q, as being the set of quartets that
involve taxon ¢, and letting |Q,| denote the size of Q,, the

rank r, is given by

|Q | zdmax(qt) with t a leaf of quartet ¢,.
t

(1)

We also introduce a grouping model as an extension to
the four taxa model in VisRD, allowing any number of
groups, perhaps representing well-established virus sub-
types or genotypes. In particular, for a pre-specified group
of taxa g, a group rank (r,) is computed by taking the aver-
aged, .. value over all taxa in group g, and over all quartets
g, that include ¢, that is,

Te | | ZT" with t in group g. (2)
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Using the group rank (7,), we can focus on recombinant
events between pre-specified groups while alleviating
some of the computational burden of the quartet scan-
ning procedure. The mean taxon ranking 7, and mean

group ranking 7, , which quantify the phylogenetic incon-

gruence in the alignment, are then taken to be the average
of these values taken over all taxa and all groups, respec-
tively.

Alternatively, a rank for each quartet can be calculated
based on the total distance covered by the trajectory for
each quartet (d,,, (q)) or the total distance from each point
to the average position of all points in the trajectory (d,,
(9)). By again computing the average d,, or d,, value taken
over all n quartets ¢, that include ¢, and averaging over a
group, we can obtain a taxon ranking and group ranking
(substituting d,,, by d,,, and d,, in (1) and (2) respec-
tively).

The taxon and group ranking values (1, and r,) are com-
puted using all quartet trajectories (filtering is only con-
sidered in constructing the highway plot). The ranking
values can be used to assess the contribution to phyloge-
netic inhomogeneity of individual taxa and groups respec-
tively (i.e. they can be used to identify recombinant
sequences), whereas the mean taxon and group ranking

values (7, and 7, ) can be individually used as statistics for

detecting recombination in a sequence alignment (see Sig-
nificance). To identify all plausible recombinants in a
sequence alignment using the quartet scanning proce-
dure, we follow a sequential deletion procedure. When
significant evidence of recombination is detected using 7,

or 1, the top-ranked sequence is considered as a putative

recombinant and removed from the alignment. We repeat
this until no significant evidence of recombination
remains in the data set. Because the absolute values of
dyqe and hence 1 and 1, are sensitive to the evolutionary
models and topology evaluation criteria used, we report
the ranking values as percentages of the highest ranking
taxon or group.

Significance

We evaluate three different ways to generate a null distri-
bution (absence of recombination) for the observed test
statistics 7, and 7, derived from the taxon-ranking proce-
dure: (i) Monte Carlo simulation (MC-simulation), (ii)

permutation, and (iii) 'redistribution' of alignment col-
umns. (i) For the MC-simulation procedure, maximum
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likelihood phylogenetic trees are reconstructed using
PhyML [29], employing the general time-reversible substi-
tution model (GTR) and gamma-distributed rate variation
among sites. Because a null distribution needs to be gen-
erated under the hypothesis of 'no recombination', we
simulate replicate data sets using Seq-Gen [31] down a
single phylogeny reconstructed from the complete align-
ment. The same models and parameters were used as
obtained by the maximum likelihood tree inference. (ii)
Since taxon ranking is based on topological incongruence,
we also use a permutation procedure that homogenizes
any phylogenetic incongruence along the genome (under
the null hypothesis of no recombination, the sliding win-
dow analysis should be invariant to permuting sites as all
sites share the same history). This is achieved by random
shuffling of the original alignment sites to produce repli-
cate data sets. (iii) To accommodate varying phylogenetic
signal along the genome, which is often observed in real
data due to different degrees of conservation within the
sequence, we also use a permutation procedure that mim-
ics the variability distribution of the alignment columns
(‘redistribution'). Essentially, this procedure reshuftles
alignment columns according to their Shannon entropy
score [32]. Replicate data sets are constructed by ran-
domly drawing for each alignment position an alignment
column with the same entropy score.

We use these three procedures to generate 100 replicate
data sets each, so as to compute null distributions for our

test statistics (7, or 7, ). AMonte Carlo p-value is then esti-

mated by counting the proportion of times the 7, or 7,

statistic on a replicate data set is larger than the value of 7,

or 7, observed for the original alignment. If the null

hypothesis is true, this proportion is expected to be 0.5.
Such a p-value represents the probability of obtaining a
result at least as extreme as observed for the original align-
ment in the absence of recombination.

RDP3 recombinant detection

The RDP3 software provides access to multiple recombi-
nation signal detection methods that can be used in con-
junction with one another [33]. The methods
(CHIMAERA, Maximum chi?, RDP, RECSCAN and Gene-
conv, [2,17,20,34]) in RDP3 search for recombination sig-
nals within sequence triplets sampled from an input
alignment. When a recombination signal is detected, the
member of the sequence triplet that is the recombinant is
identified using a weighted consensus of a series of fifteen
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heuristic tests [mostly described in [35]]. These tests fall
into four main categories: (i) Phylogenetic profile based
(4 tests; [35,36]); (ii) branch pruning and re-grafting
based (2 tests; [35,37,38]); (iii) multiple recombination
signal pattern analysis based (3 tests; [35]); and (iv) sim-
ple distance-based metrics (5 tests) that, for example,
compare pair-wise genetic, and phylogenetic tree dis-
tances of different subsets of sequences within the align-
ment on opposite sides of the detected recombination
breakpoint position. These latter tests collectively identify
the recombinant by determining which sequence(s)
within an alignment have relationships that change the
most across a recombination breakpoint. The weighting
scheme used in RDP3 to combine the results of all 15 tests
into a single consensus score is based on how accurately
the individual tests identified HIV-1M inter-subtype
recombinants (circulating recombinant forms 1 through
16) from amongst a background of supposedly non-
recombinant HIV-1M subtype sequences.

Simulation studies

Two different simulation studies were undertaken: (i) to
evaluate how accurately the methods detected specific
recombinant sequences, and (ii) to evaluate the overall
power of methods at detecting recombination signals
within sequence alignments (irrespective of which
sequences are responsible for these signals).

For (i), sequence data sets were simulated using Seq-Gen
[31] according to different trees for different data parti-
tions (Figure 3). Data sets were simulated using both a
series of symmetric and asymmetric trees. In the symmet-
ric setup, taxon 3 is a relatively recent recombinant with a
single breakpoint, while taxa 11 and 12 share a recombi-
nation event deeper in the tree resulting in two break-
points for each sequence. In the asymmetric setup, taxa 1
and 2 share a relatively recent recombination event with
two breakpoints, while taxon 14 represents an older
recombinant with a single breakpoint. A thousand nucle-
otides were evolved on each of these trees using the
Hasegawa-Kishino-Yano nucleotide substitution model
with gamma-distributed rate variation (transition/trans-
version ratio = 4.0, alpha = 1.0), resulting in a total
sequence length of 4000 nucleotides. To simulate data
sets with different degrees of diversity, we employed total
tree depths of 0.5, 1.0 and 1.5 substitutions per site (1.0 is
close to the general tree depth of HIV-1 group M data sets,
see below). In addition to rate variation among sites, we
also investigated the impact of rate variation among dif-
ferent alignment regions by employing different relative
rates for each 1000 nucleotide partition (relative rates:
0.75, 0.50, 2.00 and 0.75 respectively) and different rela-
tive rates for 800 nucleotide partitions (1.0, 0.5, 0.75, 2.0,
0.75). For each treatment (either symmetric or asymmet-
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Figure 3

Phylogenetic simulation of recombinant sequences. Sequence data sets were simulated according to (a) symmetric and
(b) asymmetric tree topologies. Each tree represents a single partition of 1000 nucleotides. In the symmetric combination, this
results in a single breakpoint mosaic pattern for taxon 3 and a shared dual breakpoint mosaic pattern for taxon || and 12. In

the asymmetric combination, taxon | and 2 share a relative recent recombination event with two breakpoints, while taxon 4
is a descendent of an older single breakpoint recombination event. In between both sets of trees, the relative rate profiles are
plotted relative to | (thin line): the black line pattern represents rate variation correlated with the breakpoint positions (0.75,
0.50, 2.00 and 0.75), while the grey dashed line represents rate variation for partitions of 800 bp (1.0, 0.50, 0.75, 2.00 and 0.75).

ric tree setup, in combination with different tree lengths,
and with or with rate variation among partitions), 100
data sets were simulated.

For (ii), to evaluate power and false positive rates in detec-
tion of recombination signals, we examined simulated
data sets previously generated for comparing the perform-
ance of 14 recombination detection methods [20]. These
data sets are now often used to evaluate recombination
detection power and false positives of new recombination
detection programs [16,39].

Empirical data

The HIV-1 group M alignments analyzed here were
derived from a full genome alignment provided by the
HIV database http://www.hiv.lanl.gov/ and manually
edited using Se-Al http://tree.bio.ed.ac.uk/software/. The
accession numbers of the included sequences are listed in
Additional File 1. Two data sets were used in our analyses:
a CRF03_AB data set (including 4 A's, 2 B's, 2 C's, 1 D, 2F's
and 2 CRFO3_AB's) and a larger CRFO2_AG data set
(including 4 A's, 4 B's, 4 C's, 4 D's, 4 F's, 4 G's, 2 H's, 2 J's,
2 K's and 4 CRF02_AG's). The HIV-1 group M alignments
had nucleotide diversities ranging from 0.17 substitu-

tions/site to 0.19 substitutions/site, which roughly corre-
sponds to 6 = 200 in the coalescent-based simulations.
The SIV data set, previously analyzed for recombination
by Bailes et al. (2003), includes protein sequences repre-
sentative of eight major SIV clades. Their accession num-
bers are also listed in Additional File 1.

Bootstrapped phylogenetic trees were reconstructed using
PhyML [29], as described above (see Significance) and
network analyses were performed using the Neighbor-net
method [40] implemented in SplitsTree [41]. To represent
robust network-like relationships, the Neighbor-nets only
display the splits that were present in 75% of 1000 boot-
strapped replicates. Intrasubtype recombination was ana-
lyzed using GARD method, available at http://
www.datamonkey.org/ GARD/[39]. Tree topology tests
were performed using Tree-Puzzle [42] and Consel [43].

Results

We present the results of three main analysis sections: (i)
simulations to evaluate the performance of different sta-
tistics and measures of significance for the quartet scan-
ning method, and simulation studies to compare quartet
scanning with other recombination detection methods in
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terms of both detecting recombination signals and identi-
fying recombinant sequences; (ii) an analysis of HIV-1
group M inter- and intra-subtype recombination; and (iii)
recombinant identification using amino acid data from
more divergent PIV lineages.

Simulated data analysis

To establish the most powerful test statistic and signifi-
cance assessment for the distance-based quartet scanning
procedure, we analyzed data sets simulated on both sym-
metric and asymmetric trees, which generates three
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recombinant sequences per data set (Figure 3). To restrict
the amount of computation in these simulation analyses,
we focus on the first sequence ranked on top by the quar-
tet scanning approach and perform sequential deletion
whilst significant evidence for recombination can be
detected. The results are summarized in Figure 4. Dashed
lines represent the frequency by which a recombinant is
correctly ranked on top, independent of whether signifi-
cant evidence for recombination can be detected in the
replicate set. The full lines represent the same frequency,
but now supported with significant evidence for recombi-
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Evaluating different quartet scanning statistics and significance assessments. The percentages of correctly top-

ranked recombinants for three different statistics and three different approaches to evaluate significance are summarized for
simulated data in the absence (b and d) and presence (a and c) of rate variation among partitions. The upper graphs (a and b)
and the lower graphs (c and d) summarize the results for the symmetric and asymmetric trees respectively. Dashed lines rep-
resent the frequency by which a recombinant is correctly ranked on top, independent of whether significant evidence for
recombination can be detected in the replicate set. The full lines represent the same frequency, but now supported with signif-
icant evidence for recombination in the replicate set. The different statistics, d,,,,, do. 2nd d,,, are represented by blue, red and
black lines/symbols respectively. Simulation, permutation and redistribution to generate null distributions for these test statis-
tics are represented by open circles, open squares and filled triangles respectively. The results are shown for simulations using
three different tree depths (0.5, 1.0 and 1.5 substitutions per site).
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nation in the replicate set. The upper graphs summarize
the results for symmetric trees (Figure 4a and 4b), while
the lower graphs summarize the results for asymmetric
trees (Figure 4c and 4d); the graphs on the right present
the results for data sets simulated with different relative
rates correlated with the alignment partitions (Figure 4b
and 4d; see Methods). Overall, recombination detection
was more successful in symmetric trees and a correctly
identified recombinant was usually a 'recent' recombinant
(sequence 3 in the symmetric trees and sequence 1 and 2
in the asymmetric trees; Figure 3). The total trajectory dis-
tance (d,.,) appeared to be a poor test statistic for recom-
bination detection; the total distance from the mean
position in the quartet triangles (d,,) was most powerful
in symmetric trees but the maximum distance from the
mean position (d,,,,) appeared to be the best overall sta-
tistic. We thus chose d,,, as test statistic for further simu-
lation analyses. Increasing sequence diversity resulted in
increased power of recombinant detection in the symmet-
ric trees (especially between tree depths of 0.5 and 1.0
substitutions per site). Somewhat surprisingly, this was
usually not the case for analysis of asymmetric trees. In
general, simulation led to stronger statistical support than
permutation. Permutation, in turn, was more powerful
than redistribution. Redistribution also resulted in a
markedly lower number of correctly identified recom-
binants, with statistical support for recombination in the
replicate data set, in the presence of rate variation among
alignment partitions. The fact that the partitions in
between recombination breakpoints coincide with the rel-
ative rate partitions in our simulation may be at least
partly responsible for this, as sites may not be efficiently
permutated across breakpoints in the redistribution pro-
cedure.

To assess the performance of the distance-based quartet
scanning method as a statistical test for recombination
signal, rather than a method for recombinant identifica-
tion, we also reanalyzed nucleotide data simulated under
varying levels of divergence and recombination originally
presented in [20] and compared this with other methods
(see Additional File 2 for a detailed presentation of the
results). In general, these analyses revealed that the per-
formance of our test is comparable to similar methods,
like RECSCAN [16], but these are less powerful than the
MAXIMUM CHI2? method [44], which has been reported
as one of the most powerful nonparametric recombina-
tion detection methods.

Finally, we compared the quartet scanning with triplet-
based approaches and their associated heuristic tests in
their ability to identify the mosaic sequences. Because this
requires a sequential deletion procedure in VisRD, we
restricted the computation by focusing on the data sets
simulated using symmetric trees (Figure 3b) and a tree
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depth of 1.0 substitution per site, similar to the HIV-1
group M data sets we analyze below. Figure 5 summarizes
the frequencies with which taxa 3, 11 and 12 were ranked
on top at some stage in the sequential deletion procedure,
and hence identified as recombinants, by the different
approaches, as well as the total number false positives
(sequences ranked on top although simulated as non-
recombinants) in the absence and presence of rate varia-
tion among sequence regions (Figure 5a versus 5b and 5¢
respectively). The performance of the different methods is
evaluated using the adjusted Rand index [secondary y-
axis, [45]]. The adjusted Rand index is the Rand index cor-
rected for chance events, which is commonly used to
measure the performance of data clustering. In our case,
the adjusted Rand index reflects the percentage of cor-
rectly identified recombinant and non-recombinant
sequences corrected for chance. Therefore, higher values
of this measure indicate higher classification accuracy. The
methods mainly differ in the frequencies with which taxa
11 and 12 - the sequences descended from a common
recombinant ancestor - are identified as recombinants.
Without rate variation among partitions, quartet scanning
based on simulation achieves the best rate of detection of
these recombinants and obtains the highest performance
score. Using permutation and redistribution, top-ranked
recombinants were still relatively frequently associated
with significant evidence for recombination in the align-
ment, but the lower detection rate of taxon 3 indicates
some sensitivity decrease. The presence of rate variation
among partitions increases the false positive rate in many
methods (Figure 5b); quartet scanning with simulation is
particularly sensitive to this. A permutation procedure,
however, still achieves good detection rates without an
excessive number of false positives. As also suggested by
the first set of simulation analyses, redistribution becomes
less powerful in detecting recombination signal with the
simulated rate variation scheme. To investigate whether
this results from inefficient permutation across break-
points correlated with rate variation, we also performed
additional simulations using a rate variation scheme that
does not coincide with recombination breakpoints (Fig-
ure 5¢). Also in this case, redistribution did not prove to
be a very powerful approach to assess significance. We
therefore restrict significance assessment to simulation
and permutation in subsequent analyses of real sequence
data.

HIV-1 intersubtype recombination

We applied the VisRD based recombination detection
methods to the HIV-1 group M full coding genome data
set which included representative sequences for subtypes
A-D, and F and the circulating recombinant form
CRF03_AB (see Figure 2). The CRFO3_AB sequences have
been clearly identified as having descended from a com-
mon AB recombinant form that circulated amongst inject-
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Figure 5

Frequency of detection

Frequency of detection

Frequency of detection

100

80

60

40

20

100

80

60

40

20

100

80
60
40

20

I:.D__f 0.25

xapu| puey pajsnly

xepu| puey paisnly

xapuj puey paisnly

http://www.biomedcentral.com/1471-2105/10/126

Performance of triplet-based and quartet-based methods in recombination identification. Frequency of correctly
identified recombinants and false positives in simulated data sets in the absence (a) and presence of rate variation among 1000
nucleotide partitions (b) and 800 nucleotide partitions (c). The latter rate variation scheme is not correlated with the break-
point distribution. The four bars per method represent the frequency by which taxon 3 (light grey), taxon || (dark grey) and
taxon |2 (black) were correctly identified as recombinants and the number of incorrectly identified recombinants (white) in
100 simulated data sets of 16 taxa. For RECSCAN, either raw pairwise distances (dis) or neighbor-joining (N]) trees were
inferred for each triplet. For the VisRD method, MC-simulation (sim), permutation (per) and redistribution (redis) were
tested. The line represents the adjusted Rand index as an overall performance measure (secondary y-axis).
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ing drug users in Russian and Ukrainian cities [46,47]. In
the quartet scanning procedure, the sequences were ana-
lyzed by grouping them according to their subtype or CRF
assignment. This group model only considers quartets
composed of sequences from four different pre-specified
groups, which allows the analysis to focus exclusively on
inter-subtype recombination events while reducing the
computational burden. In Figure 2, a highway plot pro-
vides a visual summary of the most variable trajectories
obtained during the quartet scanning procedure. The
three lanes in the plot represent the different topology-
supporting regions in a quartet triangle (Figure 1), and the
change in support is calculated as a function of the align-
ment position for each quartet. The highway plot clearly
indicates two breakpoints at approximately nucleotide
positions 2671 and 8655 (according to the HXB2 num-
bering). Table 1 lists the results of the taxon-ranking pro-
cedure for the different groups in this data set, indicating
that quartets containing a CRFO3_AB sequence show the
highest variability in phylogenetic clustering along the
genome based on both d,,, and d,,. Evidence for recom-
bination in the data set is statistically supported by both
simulation and permutation (p < 0.01 for the d, ., and d,,
statistics). The parental subtype A and B sequences are
ranked just below the recombinant group due to the high
trajectory variability of quartets including one or both
parental subtypes and the recombinants. Even after dele-
tion of the CRFO3_AB sequences, there was still significant
evidence for recombination; a more in depth investiga-
tion of HIV-1 group M recombination is provided below.

The CRFO3_AB example indicates that the 7, values allow

us to test for the presence of recombination while taxon
ranking itself indicates the most likely recombinants in
the data set without assigning query and parental
sequences a priori. Together, this represents an ideal
approach to evaluate recombination patterns in cases
where prior identification of non-recombinant reference

Table I: Group ranking based on quartet scanning of the
CRF03_AB data set.

Groups rg (%)
max dav

CRFO3_AB (2) 100.00% 100.00%
A 4) 90.03% 90.73%
B (2) 89.34% 90.30%
C@) 82.59% 82.83%
D (2) 81.23% 82.71%
F(2) 80.31% 81.96%

The group ranking values are listed as percentages of the highest
ranked group; these values are shown for the maximum distance
(dmay) and total distance (d,,) from the mean position in the quartet-
mapping triangle. The number of sequences per group is indicated
between brackets

http://www.biomedcentral.com/1471-2105/10/126

strains is problematic, like CRF02_AG [11]. To investigate
the CRF02_AG issue and other putative recombination
events in HIV-1 group M, we compiled a full genome data
set that is more representative of HIV-1 group M diversity.
Also for the analysis of this data set, we employed a group-
ing model for the different subtypes and CRFs. Although
the 7, value for the data set including CRF02_AG indi-

cates the presence of recombination (permutation p <
0.01; using d,,,,), the taxon ranking does not suggest

CRF02_AG sequences as most plausible mosaic genomes
(Additional File 3, 1st column). In agreement with the
recent analysis of Abecasis et al. (2007), the 'pure’ subtype
G sequences are proposed as the most likely recombinants
while CRF02_AG and subtype J are suggested as parental
lineages because they were ranked right below the puta-
tive recombinant. When the subtype G sequences were
removed, recombination in the remaining data could not
be excluded based on the permutation statistics (permuta-
tion p < 0.01). This time, subtype K was at the top of the
taxon ranking (Additional File 3, 31 column). It is inter-
esting to note that a recombinant origin for subtype K has
been proposed [48], but its designation was not changed
since it was already an established subtype in the literature
[49].

After excluding both subtype G and K, there was still sig-
nificant evidence for recombination in the remaining
sequences (permutation p < 0.01) with subtype A heading
the taxon ranking (Additional File 3, 5t column). To our
knowledge, subtype A has not been proposed as a inter-
subtype recombinant before and the recombination sig-
nal we detected might result from intra-subtype
recombination or intersubtype recombination for particu-
lar lineages within subtype A. We investigated this in more
detail by removing the grouping model for the different A
sub-subtypes and by investigating the evolutionary rela-
tionships using Neighbor-nets [40] (Figure 6a). When no
grouping for subtype A was used, sub-subtypes A1, A4 and
A3 were ranked on top but not sub-subtype A2 (Addi-
tional File 3, 7t column). The Neighbor-net indeed dem-
onstrates network-like behaviour among these lineages
within subtype A (Figure 6a).

Having removed sub-subtype Al, A4 and A3, our recom-
bination test was still significant (permutation p < 0.01)
and subtype ] was now at the top of the ranking (Addi-
tional File 3, 9t column). Although recombination has
not been clearly suggested for this subtype, it does indeed
cluster differently in each major gene tree of the HIV
genome (Figure 6b: branching off after subtype H and
CRF02_AG/A2 in gag, branching off after subtype H in pol
and clustering with subtype C in env). Further removing of
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HIV-1 Neighbor-net and maximum likelihood trees. (a) Neigbor-net for the HIV-1 group M data set excluding subtype
G and subtype K sequences. Only splits are shown that were present in 75% of 1000 bootstrap replicates. Conflicting phyloge-
netic relationships are indicated with arrows. (b) HIV-1 Maximum likelihood trees for the structural genes gag, pol and env. The
numbers at the nodes represent the bootstrap support percentages based on 1000 replicates. The subtype ] sequences are

indicated with a rectangle.

Page 12 of 18

(page number not for citation purposes)



BMC Bioinformatics 2009, 10:126

subtype J, there was still significant recombination signal
(permutation p < 0.01), this time with subtype D heading
the ranking (Additional File 3, 11th column). Without the
grouping model, three subtype D sequences appeared to
be the descendents of a recombinant lineage (Additional
File 3, 13t column), which was also confirmed by the
Neighbor-net analysis (Figure 6a). The final recombina-
tion signal was detected with subtype F heading the rank-
ing, despite a stable clustering of this subtype in the major
HIV genes encoding structural proteins (Figure 6b).
Recombination remained detectable after deletion of sub-
type F using the MC-simulation approach, but given the
more likely confounding effect of rate variation for MC-
simulation and the increasing difficulty of correctly iden-
tifying 'deeper' recombinants (both cf. the simulation
analysis), we did not explore further taxa deletion. A dif-
ferent order in putative recombinant deletion was sug-
gested after identification of recombination in subtype G,
K and subsubtypes A using d,, as a test statistic, and sub-
type ] was not suggested as a recombinant by this proce-
dure (Additional File 4). The intrasubtype recombination
detected in subtype A and D in both procedures was con-
firmed by GARD analysis (data not shown) [39].

We also employed our method to investigate a highly
divergent HIV-1 variant from the Democratic Republic of
Congo (DRC) [50,51]. Although the DRC strain was posi-
tioned differently in phylogenetic trees of different
genome regions (similar to subtype J in Figure 6b), it did
not cluster with any of the know subtypes and hence it
was suggested as a candidate for a new subtype [50]. As
reference strains, we included the sequence set for which
no significant recombination could be detected (see
above, including subtype A2, B, C, DUG114, H, and
CRF02_AG). Our taxon-ranking procedure indicated that
quartets containing this unclassified variant show the
highest phylogenetic variability along the genome (Addi-
tional File 5), and this was associated with significant evi-
dence for recombination in the alignment (permutation p
< 0.01). To confirm alternative clustering patterns for this
lineage and to demonstrate significant incongruence
despite convincing bootstrap support values, we recon-
structed phylogenies for the major genes (gag, pol and env)
and performed tree topology tests (Additional file 6). The
trees indicate different clustering for the DRC lineage in
the three major genes, and despite low bootstrap support
for the alternative clustering, tree topology tests consist-
ently indicated significant incongruence. Finally, we also
analyzed CRFO1_AE sequences, for which only the sub-
type A lineage is available as closely related parental
descendent. The taxon-ranking procedure still revealed
significant recombinant signal and implicated this CRF as
the lineage responsible for the incongruence (Additional
File 7; permutation p < 0.01).

http://www.biomedcentral.com/1471-2105/10/126

Recombination in primate immunodeficiency virus
evolution

Recombination in more divergent simian immunodefi-
ciency viruses (SIVs) was investigated for the amino acid
data set of Bailes et al. (2003), which includes representa-
tives of eight major SIV lineages for which full-length
sequences were available at the that time [52]. Because
there are no equidistant SIV clades similar to HIV-1 group
M subtypes, we did not apply the grouping model in this
case. However, when sister taxa representing one of the
eight major lineages were ranked as the top two
sequences, we removed both taxa in the subsequent
taxon-ranking test. The protein sequences were analyzed
using a corrected distance measure based on an amino
acid substitution matrix inferred from a larger PIV data set
(see Methods), and significance was assessed using per-
mutation. Additional File 8 summarizes the results using
the d,, statistic, while the results using d,, are provided in
Additional File 9.

The ranking procedure provided evidence for recombina-
tion in the SIV sequences (p < 0.01). Moreover, in agree-
ment with the findings of a hybrid origin of SIV in
chimpanzees [52], SIVcpz was suggested as contributing
the most to this recombination signal (Additional File 9,
1st column). However, recombination was also detected
during subsequent deletion of several SIV lineages
(SIVagm, SIVcol, SIVmnd/I'hoest, SIVsyk/SIVsm/HIV-2),
leaving only a single quartet that did not deviate signifi-
cantly from clonality (p = 0.43). There were some differ-
ences in the order by which SIVs were identified as
recombinants using d,, (see Additional File 9), but the
final result was the same.

Discussion

In this study, we have developed an extension of the visual
recombination detection method to rank taxa or groups of
taxa according to their contribution to phylogenetic inho-
mogeneity, and to test whether the overall phylogenetic
incongruence has been significantly shaped by recombi-
nation. During a sequence alignment scan, phylogenetic
inhomogeneity is quantified using a quartet mapping
approach. Taxa or groups of taxa are subsequently scored
using the average inhomogeneity of all the quartets they
belong to. To assess whether significantly more inhomo-
geneity is observed than expected under a recombination-
free scenario, we tested MC-simulation, permutation, and
a redistribution approach.

Simulation analyses suggested that identifying recom-
binant sequences without prior specifications is a chal-
lenging problem. Only relatively recent recombinants
were readily identified in symmetric trees in which recom-
bination was rare. In asymmetric trees, correct recombina-
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tion identification proved to be more difficult.
Exploratory analyses using RDP3 indicated that this was
also the case for the triplet-based methods (data not
shown). However, the recent recombination event in the
asymmetric trees occurred between somewhat more
closely related parental strains, with a different mosaic
structure, and involved two descendants of the same
recombinant (Figure 3). Hence, symmetric and asymmet-
ric tree simulations cannot be easily compared. Asymmet-
ric topologies are generally more problematic in
phylogenetic inference; more sequence data is required to
recover such topologies and they are much more suscepti-
ble to substitution saturation than symmetrical ones [53].
The latter may provide an explanation as to why increased
sequence divergence did not result in increased power for
recombination detection, as is the case for symmetric
trees.

We found marked performance differences between dif-
ferent measures of quartet variability. The poor perform-
ance of the total path distance (d,,,) may be explained by
the fact that the sliding window procedure follows the
path between two regions supporting alternative topolo-
gies in the quartet-mapping triangle in a stepwise manner,
with each step represented by different alignment win-
dows. Steps covering similar distances could also be taken
within a region supporting a particular topology, and thus
lead to similar total distances in the absence of real topol-
ogy changes. No matter how many steps need to be taken
to the point most distant from the average position, the
d,,.. measure only considers how remote this point is from
the average positions. The power of the maximum dis-
tance or the average distance from the mean position will
depend on the mosaic pattern of the recombinant. d,,,,
may be more sensitive to a small region with a different
evolutionary history, while d,, may be more sensitive in
case of multiple breakpoints.

The simulation setup was necessarily simplistic and we
have not explored the variety of recombination scenarios
that occur in reality. When recombination is frequent, for
example, all the methods would be expected to suffer
from an elevated failure rate [35]. Also the sampling rates
of recombinants relative to the parental descendent
sequences will have a profound impact on the ability to
identify mosaic sequences without prior reference specifi-
cations. When few representatives of the recombinant lin-
eage are sampled and relatively closely related
descendents of both parents are present, as is the case in
our phylogenetic simulations, than the quartet variability
should be attributed relatively easily to the recombinant
sequences by averaging the d,,,. measure over the quartets
that contain these sequences. When, however, many
sequences are included that share the same recombina-
tion history, more quartets will be composed of multiple
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recombinant sequences of the same type. These quartets
may not generate strong phylogenetic inhomogeneity,
and in the case of all four sequences representing the same
recombinant, there should be no recombination signal
detectable. Although sampling rate inequalities for pre-
defined lineages may be controlled to some extent by the
grouping constraint we proposed, it will no doubt
adversely affect taxa ranking. This may also at least partly
explain the poor performance for the asymmetric tree sim-
ulations. Here, the more recent recombinant event had
two descendents, and frequently, a parental descendent
sequence (sequence 3, 4 or 5 in Figure 3) was top ranked
instead of one of the recombinants. This again highlights
that the current simulations only offer a starting point for
comparison of different methods and their relative ability
to identify recombinant sequences, and more complexity
needs to be explored in the future.

For the quartet scanning method, generating null distribu-
tions using MC-simulation was the most powerful proce-
dure for identifying evidence of recombination, but it also
suffered from a higher false positive rate in the presence of
rate variation among genome regions. The simulated pat-
terns of rate variation are within the range of rate variation
that can be expected in HIV genomes. In this case, permu-
tation still achieved good detection rates with far fewer
false positives. This difference illustrates that the MC-sim-
ulation technique performs very well when the simulated
evolution meets the assumptions in the parametric boot-
strapping procedure. Under model misspecification, how-
ever, it may still be powerful but could also be particularly
misleading. Although rate variation can be accommo-
dated in the simulation procedure using a discrete gamma
distribution, it assumes that rate variation is independent
and identically distributed along the genome. This
assumption will rarely be met for real data situations and
it can have an important impact on comparative analyses
of data partitions across the genome. The redistribution
approach, which was designed to homogenize phyloge-
netic incongruence, but still mimic the pattern of rate var-
iation present in the real data sets, was the least sensitive.
Even when rate variation does not correlate with break-
points, this approach does not easily lead to rejection of
clonality. This indicates that permuting sites only with the
same entropy score might be too stringent to efficiently
homogenize recombination signal. In this respect, it is
important to realize that a sequence alignment can
include sites with many different entropy values, and the
number of sites per entropy value will naturally show a
large variation. For a typical simulated data set comprising
16 taxa (symmetric, tree depth = 0.1 substitutions per site,
4000 nucleotides), site patterns can break down in about
46 different site entropy values with, for example, a few
patterns having unique entropy values and about 13% of
patterns being single nucleotide polymorphisms that are
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represented by a single entropy value. Therefore, more
efficient shuffling under more relaxed rate variation con-
straints may be achieved by binning site patterns based on
their entropy value.

Taxon ranking based on quartet scanning is geared
towards the detection of recombinant sequences. As a test
for recombination signal, more powerful methods have
been devised (see [7] for a comprehensive comparison
and, for example, [54]), and we do not provide a formal
test for breakpoint locations. Also for the latter, we refer to
other developments (e.g. [15] and [39]). However, auto-
mated detection of recombinant lineages on its own is
already a difficult problem to tackle. The quartet scanning
approach performed well relative to various triplet-based
methods in identifying recombinants simulated using a
phylogenetic approach. However, more comprehensive
simulations are needed for a better assessment of the pow-
ers and pitfalls in different situations. The essential differ-
ence between the quartet scanning approach and the
various RDP3 methods does not lie in the use of quartets
versus triplets, but how their information is further
employed to identify the recombinants. While the quartet
approach deduces a ranking for taxa or groups of taxa
from the phylogenetic variability in all these quartets,
additional tests are used by RDP3 to distinguish recom-
binants from parental strains in triplets that resulted in
significant evidence for recombination. It is interesting to
note that the weighting scheme used by RDP3 to combine
the results of these tests into a single consensus score is
currently based on how accurately the individual tests
identified HIV-1M inter-subtype recombinants [35].
Because of the CRF02_AG-subtype G classification arte-
fact, a new weighting optimization might be required.
Moreover, quartet scanning might make a useful addition
to the tests employed by RDP3.

The quartet approach presented here has particular practi-
cal limitations. The number of quartets increases as a
fourth order polynomial in the number of taxa, and
although the group constraint can alleviate some of the
computational burden, both memory requirements and
speed of computation will become impractical for very
large data sets. This will be a particular burden when
many sequential deletions of recombinants are required
and significance needs to be assessed each time using rep-
licate data sets. Although these procedures can be auto-
mated and quartet information for a permutation
alignment can be stored and reused, it would be very use-
ful to be able to test every taxon or taxon group without
having to rescan pruned data sets. Our experience with the
current implementation leads us to conclude that 50 taxa
is roughly the upper limit for this method in practice.
There are obviously less triplets than quartets for any data
set, and RDP3 does not evaluate evidence for recombina-
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tion in triplets by analyzing replicate data sets, which
makes them faster in computational practice.

In sliding window analyses, it is important to determine
how much phylogenetic discordance can be expected
from the stochastic nature of the substitution process in
the absence of recombination. In BOOTSCAN analysis
[10], a query sequence is generally inferred as a recom-
binant when a high bootstrap support is observed for clus-
tering with different reference sequences in different gene
regions. However, this criterion will not be adequate to
assess variable clustering deeper in the phylogenetic trees.
This is illustrated by the highly divergent HIV-1 variant
from the DRC. Although phylogenetic inhomogeneity
was originally noted for this strain, the absence of strong
bootstrap support for the different clustering deeper in the
tree led to the suggestion that it could be a new subtype
[50]. However, our test indicates that there is more phylo-
genetic inhomogeneity than expected by chance and thus
classifies the DRC strain as a probable recombinant line-
age. Significant phylogenetic incongruence between
major genes was also confirmed by various tree topology
tests.

Both subtype G in HIV-1 group M and SIVcpz in PIV are
confirmatory examples, but the application of quartet
scanning demonstrates how recombinants can be easily
identified for cases that required in depth analysis to dis-
tinguish parental from recombinant lineages [11,52]. The
pervasive recombination in PIV lineages has also been
suggested by exploratory bootscanning and network anal-
yses [55]. In addition to PIV recombination and HIV-1
intersubtype recombination, our test was also sensitive to
intrasubtype recombination. Both in subtype A and D, we
identified recombination signals that were supported by
network and GARD analyses, and in both cases, the
recombination signal did not stem from a single mosaic
sequence but from a recombination event that was shared
among several sequences.

Although we have identified recombinant genomes at dif-
ferent evolutionary scales in immunodeficiency virus evo-
lution, it may prove a challenging endeavor to clearly
delineate breakpoints for many of these recombinants.
Similar to other sliding window analyses, breakpoints will
be readily identified if viruses from two well-supported
phylogenetic clusters recombined relatively recently.
However, our method may also pick up recombinants in
trees without well-supported groups (e.g. intrasubtype
recombinants), ancestral recombinants that were gener-
ated before well-supported clades were established
(which could be the case for the divergent DRC strain), or
ancestral recombinants of lineages that have now
diverged considerably (which is probably the case for sev-
eral PIV lineages).
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Conclusion

In conclusion, we have developed a recombination detec-
tion method that does not require a priori assignment of
reference and query sequences, statistically evaluates the
recombination signal in nucleotide and amino acid align-
ments, and identifies the most plausible recombinants.
Taxon ranking and the associated statistical test comple-
ment the visual recombination detection method. Collec-
tively, these developments comprise a powerful and
versatile methodology that will make a useful addition to
the array of recombination detection methods.
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